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The free creeping viscous incompressible plane flow of a finite region, bounded by a 
simple smooth closed curve and driven solely by surface tension, is analysed. The 
shape evolution is described in terms of a time-dependent mapping function z = Q(g, 
t )  of the unit circle, conformal on < 1. An equation giving the time evolution of the 
Q(g, t )  is derived. In practice, it has been necessary to guess a parametric form, i.e. 
Q(g, t )  = $2"; al(t) ,  az(t) ,  . . .I, whose validity must be verified using the shape- 
evolution equation. Polynomial and proper rational mappings with no repeated 
factors are apparently always valid in principle. Solutions are given for (i) regions 
bounded initially by a regular epitrochoid, (ii) the limiting case of a half-plane 
bounded by a trochoid, and (iii) a class of rosettes whose mapping is rational. The 
two-lobed rosette gives the exact solution of the coalescence of equal cylinders. All 
these mappings involve limiting initial shapes having inward-pointing cusps. Useful 
parameterizations providing regions whose limiting shapes possess corners or 
outward-pointing cusps have not been found. 

1. Introduction 
This article addresses a special type of moving free-boundary problem in fluid 

dynamics : briefly, creeping viscous incompressible plane flow in a finite region, 
bounded by a simple smooth closed curve and driven solely by surface tension. Such 
problems are self-contained in that the applied tractions are intrinsic in the 
geometry. The objective is to determine exactly the time evolution of the shape of 
the region. The problems are fundamentally nonlinear owing to the large changes in 
shape, and it is emphasized that no mathematical approximations are made. 

The intent of the article being the elucidation of a physical process, the 
mathematics itself has accordingly been kept informal. The author believes that 
sufficient conditions for the rigorous justification of the conclusions are that the 
boundary initially be as stated in the opening paragraph -simple, smooth and 
closed. The smoothness of the initial boundary will be adequate if the curvature is 
a differentiable function of the distance along the curve (cf. footnote on p. 000). The 
boundary curve is constrained in this way also for physical reasons, but 
mathematically it may approach a boundary with corners or cusps arbitrarily 
closely. 

The time-dependent shape of the region in the complex z-plane is described in 
terms of a time-dependent conformal mapping function Q(5, t )  on the fixed region 
151 < 1 of the complex 5-plane. Such as description is always possible (Henrici 1974 
$5.10, 1986 $16.3). An equation giving the time evolution of Q(& t )  is derived. In 
practice, it has been necessary to conjecture a parametric form, i.e. Q ( y , t )  = Q[g; 
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al(t) ,  a,(t), . . .], whose validity must be verified using the shape-evolution equation. 
Suitable parameterizations are not always obvious. It is argued that certain forms 
(e.g. polynomials) are always valid, but solving the equations themselves (i.e. for the 
a,(t)) can be difficult. When the conjectured form holds and the equations can be 
solved, the evolution of the shape with time is obtained in simple, exact and closed 
form. Internal velocity and stress fields can then be obtained. Some cases involving 
finite regions provide limit cases involving infinite ones. A separate article will deal 
with other unbounded regions (Hopper 1990a). 

Except for linearized small-amplitude problems and wave motion, there are 
relatively few exact solutions to fluid-dynamical problems involving moving free 
boundaries. Keller & Miksis (1983) give a similarity solution of a free moving- 
boundary problem. The notion of describing the shape evolution of a free surface in 
terms of a time-dependent conformal mapping is so obvious that it surely must have 
occurred to people long ago. Time-independent Stokes flows have been described in 
terms of conformal maps by, e.g. Garabedian (1966) and by Richardson (1968,1973), 
and time-independent potential flow may be treated using the well-known hodograph 
method (e.g. Carrier, Krook & Pearson, 1966 $4-6). The earliest work on time- 
dependent flows of which the author is aware is that of Galin (1945) on seepage in 
porous beds. The work of Richardson (1972) on Hele-Shaw flows proved seminal : see 
also Richardson (1982), Elliott & Ockendon (1982), Howison (1986a, 1986b). It may 
be noted that Richardson provided a constructive method, while the present article 
does not. Seepage and Hele-Shaw flows are potential flows satisfying Laplace’s 
equation (Batchelor 1967). Conformal maps have also been used to describe time- 
dependent shapes in other fields (e.g. Shriaman & Bensimon 1984). The present work 
addresses time-dependent free-boundary Stokes flow. The study arose from the 
author’s interest in sintering, which led him to solve exactly the problem of the 
viscous coalescence of two equal cylinders (Hopper 1984). The theory is a 
generalization of concepts implicit in that work, resulting in much easier methods. 

The successful application of the theory requires the discovery - perhaps based on 
intuition - of a form of Q([, t )  that is suitable to the problem at hand. It may be 
helpful to begin with a specific example: the nephroid (two-cusped, two-lobed 
epicycloid) is described by the mapping 

2 = w ( 6 )  = ( 5 - m  (151 = 1). (1) 

Consider the x-plane image of a smaller 5-plane circle, 151 = T < 1.  This resembles the 
nephroid except that the cusps have become rounded and the area enclosed, smaller. 
The images of yet smaller 5-circles become rounder and smaller still (they are 
epitrochoids) ; and as the 5-circles approach zero radius, their z-images approach tiny 
circles. Qualitatively, then, the sequence of images described resembles what would 
intuitively be expected of creeping flow driven by surface tension, except that the 
area should not change. As might be supposed, it is convenient to deal with an 
unchanging region in the 5-plane. So a mapping function is constructed in terms of 
(1) in such a way that the sequence of z-images are controlled by a time-dependent 
parameter A ( t )  representing the decreasing [-radii, and such that the changing area 
is avoided. The following convenient form meets this prescription : 

x = w, t )  = B[Wl w [ W 5 1  (151 < I), (2) 

(3) B(h) = h-l( 1 + 9 4 ) 4 ,  

B(h) has been chosen to give an enclosed area of a. The mapping is obviously 
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FIGURE 1 .  The nephroid family - the N = 2 epitrochoids of area IL (§4.1), v = A2 < 1 : v = 0.9 
(t x 0.0295), v = 0.7 (t x 0.147), v = 0.4 (t !z 0.551). The cusps of the nephroid ( v  = 1 )  occur at 
z = f0.577. 

X 

conformal on /[I < 1 when A < 1. This parameterization is natural for cases involving 
a high degree of symmetry, and we shall frequently use - or attempt to use -it in 
subsequent sections. Equations (1)-( 3) now describe a sequence of one-parameter 
curves (figure 1) that qualitatively describe the subsequent shape evolution of any 
one. That is, given a region bounded initially by the curve corresponding to Ai < 1, 
its subsequent shape evolution by creeping plane incompressible flow driven by the 
surface tension of its boundary resembles qualitatively the continuous sequence of 
curves parameterized by decreasing A. As proven below, this description is in this 
case (and in many others) more than qualitative ; it is exactly true for a unique function 
h( t ) .  This solves the flow problem. For both mathematical and physical reasons, the 
singular initial condition Ai = 1 is not included, and we impose the restriction A, < 1 ; 
mathematically, however, A, may be arbitrarily close to one. It is natural to choose 
the time zero such that A(0)  = 1 ; then the solution applies to t > 0. 

The fact that certain shapes evolve very simply, when viewed as conformal maps, 
is not only beautiful but of fundamental interest. That the two stress and one 
kinematic boundary conditions involved can simultaneously be satisfied in this way 
seems almost miraculous, but it is also suggestive of deep connections between 
geometry, mappings and dynamics in this class of problems. If so, insights into those 
connections may lead to methods applicable to less restricted flows. More 
immediately, the analytical tools developed have direct application to various 
scientific issues, including the healing of cracks in glass and sintering, matters to be 
addressed elsewhere (Hopper 1990 b ) .  

The key feature giving this description its utility is that the essence of the mapping 
function does not change with time. Thus, the map remains conformal with two 
critical points. Though the critical points ([ = & l / A )  move with time, their motion 
does not change the symmetry, they do not change their nature [simple zeros of 
Q’(C)], they do not disappear off the c-plane, nor do new ones appear. These 



352 R. W. Hopper 

statements would also apply to a distorted nephroid in which two critical points are 
located asymmetrically (i.e. at 5 = + l / h ,  - i/p), but determining h(t) and p(t) 
proves difficult ($4.3). No such simple situation exists even in principle when the 
critical points are branch points (arising for such interesting cases as the interior of 
a polygon) : applying the notion of moving but otherwise unchanging critical points 
to branch points gives an intuitively satisfying qualitative behaviour, but i t  is not 
quantitatively correct. 

2. Formulation and the shape-evolution equation 
A criterion for the truth of a chosen shape-evolution conjecture will now be 

derived. Zero-subscripted variables will denote actual dimensional ones, and 
unsubscripted variables will be reduced dimensionless ones. Let & be a simple, 
smooth closed curve in the complex z,-plane. Denote by Do the open (finite, simply- 
connected) region bounded by &. Choose a characteristic length R,, for example such 
that the area of Do is nR$ We shall regard Do as the cross-section of an infinitely long 
isothermal general cylinder of Newtonian viscous liquid having dynamic viscosity 7, 
density p and surface tension y ,  in a gravitational field g, all these being constants. 
Consider plane flow : that is, the velocity vector is independent of and normal to the 
axial coordinate, and this is true also of the other vector quantities. Using vector 
notation for now, denote the position x,, velocity u,, curvature K ~ ,  force vector per 
unit length (of the cylinder) F,, stress tensor components 7,,(!, pressure po, and time 
to. The surface tractions driving the flow arise from the surface tension, and the 
reduction to dimensionless form is chosen accordingly. Therefore, define the 
dimensionless variables x = xo/Ro, K = K ~ R , ,  F =  F,/y,  7ji = 70,i ,Ro/y,  p = p,Ro/y, 
u = r]u,/y, t = yt,/yR,. Then the Navier-Stokes momentum equation in dim- 
ensionless form becomes 

&Du = v2u-vp+-. PR: g 
q2 Dt Y (4) 

When the two dimensionless groups (the Suratman and Bond numbers; see Bolz & 
Tuve 1973) are both small, the inertial and gravitational forces are small in 
comparison with both viscous and capillary forces, and (4) reduces to Stokes 
equations (momentum and continuity) in dimensionless form : 

v 2 u  = vp, v ' u = 0. (5) 

The stress boundary condition in the formalism below is that the surface traction is 
in the outward normal direction and of magnitude K .  The circumstances under which 
this model is a good physical approximation are discussed in $5. As our interest is in 
the shape evolution, rigid-body motions are ignored. (It is interesting that the 
dimensional velocity u, is independent of the size of the region; of course, it therefore 
changes a small region faster than a large.) 

It is convenient to exploit the equivalence of Stokes equations to the equilibrium 
and compatibility equations of elasticity for an incompressible material. (In 
dimensional form, the velocity is replaced by the displacement and the viscosity by 
the shear modulus, and Poisson's ratio is i.) The plane creeping viscous-flow problem 
is then equivalent to an incompressible plane-strain elasticity problem. The latter 
may be treated using a stress function, which satisfies the biharmonic equation. 
Any biharmonic function of two real variables (qy) can be expressed in terms of 
two analytic functions of the complex variable z = z+iy using the Goursat 
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representation. When this is done for the stress function, one obtains the 
Kolosoff-Muskhelishvili equations relating two analytic functions $ ( z )  and $(z )  to 
the surface tractions, displacements and stresses. The historical development of all 
this is referenced by Muskhelishvili ( 1 9 5 3 ~ ) .  

An equivalent formulation would begin by applying the Goursat representation to 
a Lagrange stream function. This results in equations to (7) and (8) below, the 
differences being essentially notational (Richardson 1968). The elasticity formulation 
was preferred for being more readily available in well-organized textbook form - for 
example, in Muskhelishvili’s classic monograph (19534 and in Sokolnikov’s (1956) 
briefer version. 

In the following, primes and parenthentical exponents denote complex derivatives 
(independent of the direction of approach) with respect to the independent (complex) 
variable ; a dot denotes the derivative with respect to time ; and an asterisk denotes 
the complex conjugate. Also, in the c-plane let (T = ei6. Thus, 6 will be used to denote 
general points in the [-plane, while (T will always indicate points on the unit circle of 
the [-plane. Note that (T* = l/a. By d/dcr is meant the derivative along the curve 
la1 = 1 ; i.e. d g  = ie“d6. 

The derivation of the shape-evolution condition proceeds along the following lines : 
a kinematic condition is obtained relating d(a,t) to the surface velocities. This 
determines $([) in terms of a Cauchy integral involving Q’(g, t ) .  Simultaneously 
requiring that the surface tractions, which are implicit in a([, t ) ,  be correct then leads 
to a complicated nonlinear integrodifferential equation relating Q(a, t )  to $(v, t ) .  
Rather than solving this directly, the time-dependence of Q ( [ , t )  is adjusted to 
eliminate all singularities of $(c,t)  on 14 < 1. 

In dimensionless form, the Kolosoff-Muskhelishvili traction equation is 

$(z)+zqY(z)*+@(z)* = i [T,(s)+T,(s)]ds+const ( z  on 0, ( 6 )  1 
where s is the distance along the boundary, and T,(s) and T,(s) are the components 
of the tractions (the dimensionless form of the force per unit length of our cylinder, 
per unit length of the boundary) applied to r in the x and y directions. For Poisson’s 
ratio = # (incompressibility), the displacement equation is 

$(z)-z$’(z)*-$(z)* = 2[u,(z)+iu,(z)] ( z  in ( r + D ) ) ,  (7) 

where u,(z) and uJz) are the displacements in the z and y directions. In the present 
context these are the components of velocity. Given T(z) or u(z) on r, and the 
requirement that $(z) and $(z)  be analytic, then the functions $(z)  and $(z) are 
determined throughout P, by (6) or (7) : either equation constitutes a mathematically 
well-posed problem. Conversely, the functions $(z)  and $(z) provide a complete 
description of the elastic state of the b0dy.i Because of their physical significance, 
the functions on r are interpreted to mean - and therefore defined to be - their 

t The left-hand side of (6) has a related significance within D (Muskhelishvili 1953a, $33.) When 
# ( z )  and @(z) are known in D ,  (7) gives the displacements throughout D ,  and the stresses in D are 
given by 

T,,+T~,, = 4Re#(z), 
T~~ -T=, + i 2 ~ , ~  = 2[2*#”(2) + v(z)], 

# ( z )  and +(z)  must be single-valued in (D+I‘) .  If either is not, then physically unacceptable 
discontinuities appear. In all the mapped forms of the Kolosoff-Muskhelishvili equations, it is 
postulated that the mapping is one-to-one (Muskhilishvili 1953a, $47); this is assured by the 
present hypotheses on r (Titchmarsh 1939, $6.45). 
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limiting values as z approaches the boundary F from within D.  Actually, there is an 
arbitrariness in the functions $ ( z )  and l l r (z) ,  and in the constant of integration in (6), 
having to do with rigid-body motions (cf. Muskhelishvili 1953a or Sokolnikov 1956). 
Being concerned only with shape changes, these are of no concern. It is convenient 
and acceptable, however, to set # ( O )  and the constant in (6) to zero. 

Surface tension gives rise to a surface traction normal to the boundary and of 
magnitude K .  Let a be the angle between the outward normal of the boundary and 
the direction of the z-axis, measured counterclockwise. Then using K ( S )  = da(s)/ds, 
(6) becomes 

#(z)+z#’ (z)*+$(z)*  = -ei0@) ( z  on 0. (8) 

Now let x = a(<) conformally map 161 < 1 onto (D+T). Let $1(6) = #[Q([)] and 
llr1(5) = $[Q(c)]. Using the expression for the angle a a t  the z-plane image of a 
boundary point a (Muskhelishvili 1953a, equation (49.3)), (8) becomes 

Likewise, letting u1(5) = u[s2(5)] = u,+iuy, and combining (6) and (7) ,  

Equation (10) applies only on the boundary. As all of the following analysis occurs 
in the 5-plane, the subscripts ‘1’ in the above equations will hereafter be dropped. 
The functions $(6) and $ ( g )  are to be analytic on 161 < 1. For convenience, specify 
Q ( 0 , t )  = 0. This can give rise to a rigid-body motion, but again, these are of no 
concern. 

Consider now a material point on the boundary F that is the z-plane image of a at 
time t ;  that is, the point Q(a,t) = Q(ei9,t). Mathematically, it is assumed that the 
shape evolves smoothly in time : specifically that d(a, t )  is continuous. Presumably, 
this is implicit in the equations of motion; physically, anything else would seem 
preposterous. During the time increment dt, this point moves to the point Q(a,t) 
+u(a, t )  dt. In  terms of the description we are choosing to use, this new point must 
be given by Q[ei(s+d9), t + dt]. That is, our material point must be the z-plane image, 
by the mapping function a t  time t + dt, of some point - not necessarily the original 
point - on the unit circle in the 6-plane: 

Q[ei(9+d9), t+  dt] = Q(eis, t )  + u(ei8, t )  dt 

= Q(eiB, t )  + a ( e i 9 ,  t )  ieigd9+d(eis, t)dt. (11) 

The change in 9 will depend upon both 9 and t ,  so write d 9  = d(a, t )  dt where &)fa, 
t )  is real. Combining with (lo),  

Now #(c, t )  is required to be analytic; d(6, t )  is analytic ; by the requirement that 
there be no critical points on (D + 0, Q’(5, t )  $: 0 on 161 < 1 ; we have chosen Q(0, t )  = 
0, so d(0, t )  = 0;  and we have chosen $ ( O )  = 0. The first and last terms are therefore 
boundary values of functions analytic on 161 < 1. It follows that the two terms in 
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brackets are the real and imaginary parts of the boundary values of some function 
analytic and single-valued on 151 < 1.  The real part is known, so this function is 

where the contour integrals are taken around the unit circle, la1 = 1. 
The Cauchy integralst in (14) define a function that is analytic on 151 < 1 and on 

151 > 1 but discontinuous across 151 = 1. As noted above, we are concerned with 
functions defined by Cauchy integrals and the limits on the boundary of integration 
as 6 approaches a boundary point a from within the contour of integration. A Plemelj 
formula gives this limit as 

Singular integrals such as (15) will always be taken to mean the Cauchy principal 
value, but no special notation will be employed. Further, the function will be 
regarded as defined within and on the path of integration in just this sense. F(6 ,  t ) ,  
for example, as given by (14) and (15) will be regarded as defining a single function 
on 161 < 1. Derivatives are obtained by differentiating (146) under the integral sign. 
Since 

i sin (8, - 8) 
a-a, l - C O S ( 8 , - 8 )  

it is obvious that F ( a ,  t )  indeed meets the requirement of (13). 
Upon substituting into (13), and noting that each of the resulting terms are 

obviously boundary values of functions analytic on 151 < 1, one obtains the explicit 
formula 

(17) (4, t )  = - CQ'(5, t )  F ( 5 , t )  +fat;, t )  (151 < 1). 

Differentiating and substituting into (9), 

By (15) the first bracketed group in (19) is just [ -F(a , t )*] .  Rearranging and 
conjugating, 

U ( a ,  t)@(a,t)  = -SZI(a, t )F(a, t )  [aa'(a,t)]*-SZ'(a,t)~(a,t)* 
d d 

d a  d a  
+Q(a, t)*-[aQ~(a,t)F(a,t)]-Q(a,t)*-"Si(a, t ) ] .  (20) 

t The various manipulations (Plemelj formulae, limits of derivatives, etc.) of Cauchy integrals 
in this article are valid for the contour (151 = 1 )  and density functions under consideration (e.g. 
Muskhelishvili 1953a, 19533; Carrier et al. 1966). Physically, the present cases require the stresses 
be continuous, so $"({) is required to  be well-defined on 161 < 1. As a consequence, it i B  necessary 
that F'(5) be well-defined on 151 < 1 ,  including as [+ cr. Expressed in terms of the z-space geometry 
of r, differentiability of K ( S )  suffices (Muskhelishvili 1953% $69). 
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The continuity of d(c,t) together with the existence of Q c n ) ( [ , t )  implies that 
aal(c, t ) / a t  = ad(c, t ) / a c .  Noting that (d/da) [Q(a, t ) * ]  = - ~ ~ 5 2 / ( a ,  t ) * ,  equation (20) 
then becomes 

d d 
d a  dt 

Sl’(a,t)$(a,t) = -[[a51n’(a,t)51(u,t)*F(a,t)]--[51R’(a,t)51(a,t)*]. (21) 

This is one form of the shape-evolution equation. From it one obtains equivalently 

-[a52/(a,t)]*P(a,t)-d(a,t)*. (22) 

Given Q(a, tl) - i.e. a t  all points of the unit circle, a t  one instant of time - all the 
quantities in (21) or (22) are known except @(g, tl) and d(a, t l ) .  The requirement is 
that h(a ,  t,) be chosen such that $(a, tl) is the boundary value of a function analytic 
and single valued on I&J < 1. This is a problem in analytic continuation. It seems that, 
in principle, either (21) or (22) uniquely determines d([, t ) ,  except for rigid-body 
motions : This may be seen by considering that the original problem certainly has a 
solution (it is mathematically well-posed), which if known would provide q5 and $; 
and the shape evolution can certainly be described by (an essentially unique) 51. 
Equation (21) would then give h(a,t,) explicitly. By the uniqueness of analytic 
continuation, only one particular d(g, tl) could result. This applies for all t ,  2 ti and 
so determines Q(5 , t ) .  The fact that (21) determines the shape evolution does not, 
however, gives us that evolution. At least, this author has no idea how to go about 
‘solving’ (21), given an initial shape Q(cr, ti). 

If a parametric description has been chosen, however, the problem simplifies. It 
must then be shown that the chosen parametric form satisfies (21), at least in 
principle; that is, that the parameters may be chosen such that (21) is indeed the 
boundary value of a function analytic on 151 < 1 ; or alternatively stated, that the 
parameters may be chosen such that values on = 1 given by (21) may be continued 
analytically onto 14 C 1, and that this analytic continuation is single-valued there. 
The values of the parameters must then actually be determined. Typically, the 
second task automatically fulfils the first ; but sometimes the former is feasible while 
the latter is not. If it turns out that the parameterization does not admit a solution, 
this does not mean that the solution of the initial-value problem for the chosen 
a(a, ti) does not exist : it certainly does. It is just that  the parameterization does not 
give the time evolution, i.e. the guess was wrong. All these remarks apply equally to 
(22). To summarize: 

Shape evolution 

Given an initial shape bounded by the (simple, smooth, closed) curve z = O(a, ti), 
the requirement that $(c, t )  be a function analytic and single-valued on 14 < 1 for 
t.2 ti, and having boundary values $(a, t )  given by (21) or (22), determines uniquely 
Q(a, t )  and therefore Q(c, t ) .  

3. General observations 
Equations (21) or (22), giving the shape evolution, are fairly general and apply to 

any Q(g, t )  describing a region bounded by a simple smooth closed curve. The 
dynamics of the flow is unaffected by rigid-body motions, since inertia is neglected 
and there are no external fields. Thus the location and orientation of the shape is 
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arbitrary. It is often helpful to use this arbitrariness to cast Q ( y , t )  in a convenient 
form. In addition, it is also often convenient to use a scaling factor as 

(23) 

where B(t) is real and positive. Convenient properties may then be imposed on w(6,  
t ) .  Having normalized the spatial scale of the z-space region (i.e. the distance R,) and 
chosen w ( [ ,  t ) ,  the time-dependence of B(t) is determined from the time-dependence 
of w(y ,  t )  through the requirement of area conservation. The area enclosed by z = 
Q(u. A )  is given bv anv of the standard formulae 

Q(C, t )  = B(t) 4 6 ,  t ) ,  

Incidentally, the requirement of area conservation is contained in (21) : Integrating 
around 1 ~ 1  = 1, the left-hand side vanishes by the CauchyGoursat theorem ; the first 
term on the right-hand side vanishes directly; and so the integral of the last term, 
which by (24b) is proportional to the time derivative of the area, equals zero. 

Let us recall a few elementary properties of conformal maps. First, if f2'(c0) = 0 or 
00, then the z-plane image of a smooth g-plane curve through the point go will have 
a discontinuous change of direction. This applies in particular to the curve 14 = 1. 
Suppose Q'(5) N ([-go)" near 5,. If IgoJ = 1, then the angle of the change depends on 
a as follows: (a = 1) gives an inward-pointing cusp; (0 < a < 1) gives an inward 
pointing corner of finite angle ; ( - 1 < a < 0) gives an outward-pointing corner ; and 
(a = - 1)  gives an outward-pointing cusp. If the point 5, lies close to but outside 
151 = 1,  then the z-plane image of 151 = 1 will exhibit a somewhat rounded-off version 
of the singularity. The inward-pointing cusps, and their rounded-off versions, are 
obviously a ubiquitous feature of polynomial maps. It may also be noted that two 
zeros of #([) create a loop in Q(5) if they are too close to each other and to 14 = 1. 
Another common singularity is a simple pole. Suppose Q(g) - near c0. This 
locally approximates a bilinear transformation and therefore locally maps a circular 
arc into another circular arc; so i f f  lies near 1[1 = 1, the z-image of this curve near 
co is a large approximately circular arc. 

Once Q(g, t )  has been found, by whatever means, (17) gives # ( g , t ) ;  and using 
Cauchy's integral formula, (21) or (22) gives $([, t ) .  Then the internal velocities are 
given by (7) and the internal pressure and stresses, by the formulae in the footnote 
on p. 00. If only the surface velocities are required, (10) provides them without the 
need to evaluate $(c, t ) .  Though straightforward, these computations are typically 
complicated and tiresome (Hopper 1990a), and yield complicated formulae. 
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Three conjectures dealing with important forms of mapping functions will now be 
given. They seem likely to be always or almost always true, but proving so depends 
on the existence of a solution to a system of ordinary differential equations, which 
the author has been unable to demonstrate. The conjectures may be regarded as 
guides for guessing suitably parameterized mapping functions, their correctness to 
be verified subsequently. 

Polynomial Mups (conjecture) 
A shape given initially by an Nth-order polynomial map will be described by an 

Nth-order polynomial map a t  all subsequent times ; that is, if a(y, ti) = P&, ti), then 
Q ( [ , t )  = PN(c,t) for t > ti, where of course PN(Y,t) is an Nth-order polynomial in g 
having t-dependent coefficients. The argument is simple : let 

Then both terms on the right-hand side of (21) include terms in ~ - ~ , n  < N .  The 
analytic continuation of (21) onto 161 < 1 is obtained by simply replacing cr by 5. 
Since Q'(0, t )  + 0, it is necessary that the coefficients of each of the crWn terms on the 
right-hand side of (21) vanish if @([, t )  is not to have a pole a t  5 = 0. The real and 
imaginary parts of these coefficients lead to 2N algebraic equations containing 2N 
unknowns, namely Re u,(t) and Imu,(t). In  principle, solving these equations 
provides 2iY coupled first-order ordinary differential equations of such forms as 
Re&,@) = g,[Rea,(t), Rea,(t), ..., Rea,(t),Ima,(t),Ima,(t), ..., Ima,(t)], and the 
initial values are known. The conclusion would then follow from the existence of a 
solution to this system of equations, but this is not easily proved. The difficulty in 
doing so arises because the functions g n  are determined by the solution of a system 
of algebraic equations, and the properties of the gn are not a priori obvious.? The 
'fact' (which was argued but not proved at the end of $2) that (21) is sufficient to 
determine uniquely the function Q(Q t ) ,  given Q(5, ti), implies nothing about a 
hypothesized parameterization of Q(5, t )  ; if it  happened that in some case there were 
no solution to the system of equations for the a,(t), this would imply only that the 

f Standard theorems state conditions on the functions g, (briefly, that they be continuous, 
single-valued, and satisfy a Lipshitz condition) sufficient to ensure the existence of a (unique) 
solution (e.g. Ince 1926). Requiring that the coefficients of each of the B-" terms on the right-hand 
side of (21) vanish leads to equations of the form 
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parameterization is unacceptable. On the other hand, the argument a t  the close of $2 
does imply that if a solution in that parameterization exists, then it is unique. 

Obtaining analytical solutions for the a,(t) is feasible only in the simplest cases. 
Numerical solution of the system does not appear to present any special difficulties. 
That a,(O) = 0 implies nothing in particular about a,(t) (1 < n < N). In  particular 
cases, however, symmetry may imply a,(t) = 0 for certain n. 

Partial- Fraction Maps (conjecture ) 
A shape given initially by a mapping in the form of a partial-fraction expansion, 

i.e. 

where la,(t)l < 1 (and N is finite), will be described by this same form a t  all 
subsequent times. The demonstration is elementary but somewhat involved : The 
analytic continuation of (22) onto 161 < 1 is obtained by simply replacing u by 5. 
Noting that 

Q(a)* = c-, A: 
a-a: 

etc., it is seen that factors not involving conjugates are analytic throughout this 
domain, while the factors that do involve conjugation introduce, potentially, first- 
and second-order poles a t  the points [ = a,(t)*. The adjustable parameters of the 
mapping must be chosen to cancel these singularities. 

Substituting (28) into (22) leads to 

Expanding the coefficients of ([-a:)-l and 
collecting the terms in ([-a:)-,, and requiring them to vanish, 

in a Taylor series aboub [ = a,*, 

Similarly collecting terms in ([-at)-’, one obtains 

F ( [ )  = P ( [ ;  al,  a2, . . . , aN,  A,,  A,, . . . , A N , )  is of course well behaved a t  [ = kz because 
F(5)  is analytic on 1c1 < 1. Likewise for Q and its derivatives. The real and imaginary 
parts of (30) and (31) provide 4N coupled ordinary differential equations for the 4N 
unknowns. As before, our assertion would follow from the existence of a solution to 
this system of equations, but this existence has not been demonstrated. Comments 
similar to those regarding the polynomials apply. 

Rational Maps (conjecture) 
A shape given initially by a mapping that is the ratio of an Mth- to an Nth-order 

polynomial, with M < Nand having no common or repeated factors, will be described 
by this same for at all subsequent times; that is, if 1216, ti) = [PIM,l([r ti)/QN(c, ti), 
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then Q([, t )  = 5p1M-1([, t ) /QN( t ; ,  t )  for t > ti, where the notation is obvious. This is 
almost, but not quite, a corollary of the conjecture on partial-fraction expansions : 
Because PMel([,  t ) /QN(t; ,  t) is a proper rational function, it may be expressed in the 
form of (28). It follows from the conjecture on partial-fraction expansions that Q([, 
t )  will evolve as a rational function whose denominator is an Nth-order polynomial. 
The numerator will remain of order M except possibly instantaneously. The 
instantaneous changes of the order would occur only by a coincidental vanishing of 
a sum whose form depends on M and N .  For example, if M = N -  1, then the 
numerator would change order only if x,, A,/a,, vanished. 

What happened in these cases it that critical points of the mapping function a([, 
t ) ,  which lie on I[I > 1, are moved onto 14 < 1 by the conjugation. This is quite 
general: a given Q([, t )  having the properties we have required will represent a 
mapping with critical points on > 1. These might be zeros of Q ' ( [ , t ) ,  poles, or 
branch points. If Q(a, t )  were known, its analytic continuation would of course 
provide a([, t ) .  The function Q(a, t)* is well-defined and single-valued on = 1 and 
may be continued analytically onto some extensive region of [-space. It will be found 
that this analytic continuation? is analytic and single-valued on I[l > 1, but that it 
will have singularities, or zeros of its [-derivative, on IlJ < 1 corresponding to the 
critical points of a([, t )  located on It;l > 1. 

The fact that polynomials and this class of rational mappings can in principle be 
solved, is of theoretical interest in that any region of the type under consideration 
can be approximated to arbitrary accuracy by them (Rudin 1966). This is not 
particularly helpful in practice. In particular, equations describing the dynamics of 
the critical points are inconvenient. 

4. Examples 
With one exception, the following examples have no particular practical 

application but serve to display the simple techniques used to solve the easy cases 
and the origins of the difficulties encountered in the hard ones. 

4.1. Epitrochoids - binomials 
The simplest non-trivial polynomial map is specified by w ; ( [ )  = 1-6. Then z = 
wl([) = C-iF, IlJ = 1,  generates a cardioid with its cusp on the Rez-axis. Noting 
that w X ( [ )  = 1 - 5" has its zeros spaced equally around the unit circle, the map 

(32) 

(Id = 1) will have N inward-pointing cusps. It is easily shown to be an N-cusped, N- 
lobed regular epicycloid. (The nephroid of $1 is the N = 2 case.) The map for l[l = 
const > 1 has loops, while that for 151 = const < 1 has rounded cusps. These are all 

t The analytic continuation of Q(o, t ) *  is often denoted a(S, t ) .  Thus, a(cr, t )  = Q(a, t ) * .  Using 
the notation of (25) for the Taylor series of Q(5, t ) ,  

z = w,([) = 6- "+'/(N+ 1) 

m 

D(5,t) = x a,(t)*C-:-". 
fl-0 

At first glance, this form suggests that any conjectured parameterization might be tested with a 
Laurent series about 5 = 0, and that the shape-evolution equations could usefully be expressed in 
such terms. The equation does not, however, identify all of the singularities on 151 < 1 in any way 
that would be obvious, and integrating around 151 = 1 does not necessarily give the Laurent 
coefficients. 
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epitrochoids, but the theory applies only to the latter case. From $3,  the mapping 
function of an N-symmetric epitrochoid is expected to evolve as a polynomial of 
order N +  1 ; and so its derivative will have N zeros, which are critical points of the 
map. Physically, the latent cusps must get smoother with time, and the symmetry 
will not change; so the only reasonable expectation is that the zeros of wb(5) will 
move outward radially. Hence, the obvious parameterization is given by (2). (The 
appearance of terms in r, 1 < n < N, would destroy the symmetry.) The zeros of 
a&([, t )  are located at A-' ei(n-1)2n'N, n = 1,2, . . . , N .  Clearly, A(0) = 1 ,  h(m) = 0,  
i ( t )  < 0. Fixing the area at n, and using (24d) ,  

BN(A) = A-'[l + h 2 N / ( N +  1)I-i. 
Condensing the notation, 

(33) 

N +  1 

Note that if the quantitative time dependence is not required, but only the sequence 
of shapes, the problem is solved. 

For the time evolution, we substitute into (21) .  As we knew would be the case, the 
poles are avoidable. Equation (21) becomes 

Carrying out the differentiations, obtaining the analytic continuation by replacing u 
with [, and ignoring those terms that are obviously analytic throughout lcl < 1, 

(N+ 2) AN+'B2 +2AN+2BB' isN-' + (analytic terms). (36) 
N +  1 1 

Expanding F(c)  and F(5) in their Taylor series about 6 = 0, 

(N+ 1) (AN+2B2)-1 a,([) +([) = SN-'[NF(0) + (N+2 +2AB'/B) (A/A)] 

+ [ - N F ( o )  (N-  1 )  + y " F " ( 0 )  ""(0) ($-$+. . . 

+ (analytic terms). 
(N-  l)! (N-2)! 

Differentiating (14 b)  

cos n9 - i sin n9 
( n  2 1). 

(1 - 2AN cosN9 + A2N)S 

(37) 
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The sin n9 integral vanishes by its oddness. Expanding (1 - (2hN/1  + hZN) cosN9j-f in 
a (uniformly convergent) power series, Fcn)(0) may be expressed as an infinite series, 
each term of which contains an integral of the form 

1 cos n9 cos" N 9  d 9  (m > 0). (39) 

Every such term can be reduced to  integration of a single cosine factor by 

cos n9 cosm N 9  = (cos N 9  cos n9) cosm-l N 9  

= ~ [ C O S  (N+ n) 9 + cos (N-  n) 93 cos N 9 )  ~ o s ~ - ~  N 9  

... (40) - - 

For, n < N ,  each integral vanishes. Hence F(")(O) = 0 for 1 < n < N .  
Returning to (37);and recalling that a'(0) + 0, $([) will be non-singular a t  the 

origin if and only if 
( N + 2 + 2 W / B ) A  = -Nhli(O). (41) 

Andlogous to the preceding, (14) leads to 

F(0)  = - (1-2hN cosN9+A2N)-td9. 

Changing variables, using periodicity, and referring to  Gradshteyn & Rhyzhik (1980, 

1 
equation (3.674-l)), 

K h B  

where K ( k )  is the complete elliptic integral of the first kind defined by (conventions 

(44) 

F(0)  = - - K ( P ) ,  (43) 

vary) 
(1 - k2 sin* $)-id$. 

Using (33) and (41), (43) becomes 

Rearranging, integrating, changing the dummy variable of the integral to k = A N ,  
and replacing the parameter h with v = A N ,  we have finally 

(47) 

Equations (46) and (47) provide a complete description of the evolution of the 
epitrochoids. As forecast, an epitrochoid evolves through a continuous sequence of 
other epitrochoids of the same symmetry and area. The rolling circles generating the 
sequence change diameters with v, though their ratios remain fixed. The limiting 
behaviour as t + 00 gives the decay constant for the Nth-order, small-amplitude 
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harmonic distortion of a cylinder.? Numerical quadrature of (46), and obtaining 
approximations valid for very short and for very long times, is straightforward. The 
results for N = 2 were included in figure 1. Some quantitative details of cusp 
rounding are given in Hopper (1990 6 ) .  In  addition to the epitrochoids, several other 
elementary maps lead to time integrals involving a factor K(k)-l. This arises merely 
from IQ’(g, t)l having a simple form leading naturally to an elliptic integral and has 
no particular significance. 

4.2.  Trochoids - a limiting case 

As N becomes large, the epitrochoids become a circle with tiny surface ripples locally 
approximating a trochoid. Renormalizing the spatial scale and taking the limit as 
N + c o  gives the flattening of viscous half-space bounded by a trochoid. In 
dimensional form, the epitrochoid r, bounded an area of nRi. The approximate 
distance between radial minima - the latent cusps -was 27dl,/N. It is convenient to 
renormalize using the distance scale R, = Ro/N. (That is, in all the dimensionless 
forms a t  the start of 52, replace R, by R,.) Then the dimensional parametric forms 
of (46) and (47) are 

V 
Xo(9, V )  = N R ,  ( 1 +- /:IT[ cos9-- N+1 cos (N+ 1) 91, (48a) 

N +  1 N +  1 
to = - 

Y 
(49) 

Let # = N 9 ,  rotate the figure by interchanging X ,  and Y, so that the fluid occupies 
the lower half of the plane, take the limit a t  N - t  CO, and translate so that the net area 
of fluid above Y, = 0 is zero. One obtains 

X(#, V )  = xo(#, v ) / R m  = #-vsin#, 

Y(#,  V )  = yo(#,  v)/R, = - (iv2 + v C O S ~ ) ,  

(50 a )  

(506) 

t (v)  = - - IT [kK(k)]-’dk (0 < v < 1). (51) 
hRm Yto - s: 

The interval 0 < # < x describes a half-period of the curve. Equations (50) describe 
a trochoid that is the locus of a point on a disk of radius R,, located a distance vR, 
from its centre, when the disk rolls on Y,  = -Rm( 1 ++v2). The depth is Y(n, v) - Y(0, 
v) = 2v. The singular case (v = 1) is a cycloid. As v+O, the trochoid approaches the 
sinusoidal form Y = vcosX. Typical cases are shown in figure 2. 

The computation of t ( v )  for the trochoids is typical. It is generally easiest simply 
to integrate (51) numerically using some standard method. The author used a 
polynomial approximation for K ( k )  (Abramowitz & Stegun 1965 $17.3) and the 
quadrature feature built into an ordinary programmable pocket calculator 
(Hewlett-Packard HP-15C) to obtain values of t (v)  accurate to four significant 

t If we consider a single mode of order N, with an area of nR;, the distorted cylinder may be 
described in z-plane polar coordinates by R(0, t )  = [Rt-&4,(t)*]:+AN(t) cosN0. Being careful not to 
confuse 0 in the z-plane with 4 in the 6-plane, a comparison with the N-lobed epitrochoid as v +  
0 leads to the correspondence, to first orde; in v and in A,, of A ,  = 2Ro v/(N+ 1). Then using (46), 
we find the small-v limiting behaviour as A , / A ,  = 3/v = I$. Thus the dimensional time constant 
for the exponential decay is 2vR0/yN. 
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FIGURE 2. Trochoids ($4.2): v = 1 ( t  = 0), v = 0.8 ( t  x 0.124), v = 0.6 ( t  x 0.789), 
v = 0.4 ( t  % 1.545), v = 0.2 ( t  x 2.460), Y = 0 (t = a). 

0 1 2 3 

FIGURE 3. Time-dependence of the trochoids: points are v( t )  determined from (61) numerically; 
solid curve is the longtime approximation given by (52). 

f 

figures in less than a minute each. The author used an analytic approximation to deal 
with the small-t singularity, obtaining t ( v  = 0.9997) = 1.69620 x lo-*. Given the 
accuracy of direct quadrature, which gave 1.69623 x such procedures are not 
worth the effort. For long times, the k -+ 0 expansion can be used to obtain 

v E 0.8483 e-it (t -+ a), (52) 
where the prefactor was determined numerically. t ( v )  is shown in figure 3. As v + O ,  
we have a sinusoidal surface of wavelength 27~R, and amplitude vR, decaying as 

By comparison, a similar wave under the influence of gravity decays exponentially 
with a time constant 2y/pgR, (e.g. Lamb 1932 $349). The ratio of the characteristic 
decay time for capillarity to that for gravity is thus pgR:/y. This measure of the 

e-it = e-yto&Rm. 
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importance of gravity relative to that of capillarity is just the Bond number defined 
formally in (4). In  this case, and typically, it is at long times that gravity has 
its greatest influence. For y x 100 dyn dm-l, p x 1 g cm-, and R ,  x 1 mm (wave- 
length % 3 mm), we have pgR2,/y x 0.1. Note that this difference of a factor of ten 
occurs exponentially. 

4.3. Symmetrical cubic maps 

Though obtaining the time dependence involved a bit of effort, the shapes 
encountered in the evolution of an epitrochoid - given by the radial motion of the 
critical points - were deduced virtually without calculation. Ordinarily this is not 
easily done, as is demonstrated by the apparently simple case of a mapping that is 
symmetric across a line and is described by a cubic. Here there are only two critical 
points, and these must move about in the complex [-plane. But even the qualitative 
features of that motion are hard to infer. 

Describe the map by the cubic 

fa, t )  = %(t)  C+az(t) s +a3(t) 6- (53) 

Because of the symmetry, the a,(t) can be chosen real. Substituting a(v ,  t )  from (53) 
into (21), setting the factors of v-l, v-2 and v-3 to zero, and requiring the area to be 
x ,  one obtains 

a;+2a;+3a; = 1, (544  

d 
,[az(ai+2a,)] =-“a,(ai+2a,)]~(O;U,,a,,a,)-a,a,lp’(O;ai,a,, as), (54b) 

respectively. One of the a,(t) can be eliminated with (54a) (which is just the area 
conservation), leaving two coupled nonlinear ordinary differential equations 
determining the other two, 

It is intuitively appealing to express the mapping in terms of its critical points. 
Doing so gives mathematically natural forms for P(0) and P’(0) but proves otherwise 
inconvenient. Mathematically, the most natural formulation is to use the groupings 
of (54) [i.e. b, = a,a,, b, = a2(a,+2a,)]. Numerically, there is then no particular 
problem. These equations illustrate the complexity of proving the conjectures of $3  
(cf. footnote on p. 00). 

4.4. Rosettes and equal circles - rational functions 

Consider the mapping 

w N ( [ )  = [[I + [ “ / ( N -  1)I-l (151 = 1, N 2 2). (55) 

For N > 3, this describes a sort of rosette shape reminiscent of an N-cusped 
epicycloid, except that the lobes are more circular, especially for smaller N .  As 
N-+ co, the rosettes approach the epicycloids. For N = 2, the lobes of the z-image 
of I I ! J  = 1 are of infinite radius ; if the figure is scaled to a finite area, as we shall do, they 
are found to be circular. The zeros of w;V([) lie on 151 = 1, while the poles of w N ( [ )  lie 
on a circle 

As with the epicycloids, the results of $3  combined with the symmetry suggest the 
parameterization of (2), resulting in 

= ( N -  1)l” 2 1, the equality holding only for N = 2. 

a,(C, t )  = BA[[1 +ANCN/(N-  I)]-’, 

PN([, t )  = BA[l -ANCN] [1+ A N [ N / ( N -  1)]-2. 

(56) 

(571 
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As (56) can obviously be expanded in partial fractions of the form of (28), and since 
the symmetry surely is maintained, it may tentatively be assumed that (56) is a valid 
parameterization of z = aN(v, t ) .  This assumption is justified later. Choosing the area 
to be n, (24b) leads to 

1 - P / ( N -  1 ) 2  

A(l+h2N/(N-l))f '  B N ( t )  = B"W1 = (58) 

In the limit as N +  m,  (56) gives again the trochoid. For N = 2, the non-singular cases 
h < 1 are inverse ellipses of area n. As h -+ 1, the singular case of two touching circles 
is approached. The N = 2 case therefore solves the problem of the coalescence of two 
equal cylinders in plane flow. 

Having the deduced form of Q N ( [ , t ) ,  the time dependence requires only the 
determination of Aft).  It will suffice to apply (30) to any one of the a, of the partial- 
fraction decomposition. Noting the roots of [l +ANcN/(N- l)], we have a, = 
a,(h) = h(N- 1 ) - l I N  e-in(2n-1)/N (n = 1,2 ,  . . . ,N). Thus, in (30) ,  &,/a, = i / h  for all n. 

- N \-N I 

d8. (59) 
i - [ h ( N -  l)-11N]2-i2h(N-i)-1/Nsin [ 8 - ( 2 n - i ) n / W  

X 
l - [A(N-  1)--1~~]2-24N-l)-1~~Cos[9-(2n- l)n/N] 

Changing variables with [8 - (2n - 1)  x/N]  + 9, 

1 - 2[h(N- l)-*/N]N COSNS. + [h(iv- 1 ) 4 " ] 2 N  

(1 + 2AN cosN9 + h 2 N ) t  
F"(LY,*,t) = - 

Exploiting periodicity to return to the limits to +n, one obtains 

2 n m  (1 + 2hN cosN9 + h2N)t 
i / A  = 

d8. (61) 
1 

X 
1 - 2 4 N -  1)--1/N cos9+ [h(N- 1 ) - - 1 / N ] 2  

As expected, this result is independent of n. It cannot be expressed in terms of 
convenient standard functions, but its numerical quadrature presents no problems, 
and a second quadrature gives the time. 

For N = 2 ,  (61) can be expressed in terms of an elliptic integral: 

d 9  (62 a )  (1 + 2h2 cos 28 +A4) i  1 -2h cos 8+ h2 
1 - 2 ~ 2  cos 29 +A* 1 

- 1 -A2 (1 +h2) +2h cos9 d6. 
- - m - " ( l - n  ) + 4h2 cos2 914 

The cos 9 term vanishes, and after changing variables with cos 9 -+ x and employing 
equations (3.152-3) and (9.126-3) of Gradshteyn & Rhyzhik (1980) one obtains 
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FIGURE 4. Coalescence of two cylinders ($4.4): t = 0.04, 0.30, 0.80, 1.50, 3.00. 

X 

Integrating, changing variables and replacing the parameter h by v = h2, one has 
finally 

(64) t = $IT 1 [k(  1 + k2):K(k)]- l  dk, 

where the shape is given by 
1-v2 u 

2 = arc, v( t ) ]  = -~ 
( 1  + VZ)i 1 + va2.  

Equations (64) and (65) describe the coalescence of two equal cylinders in plane 
flow (figure 4 )  and are equivalent to results obtained previously by far more laborious 
meanst. A generalization to unequal circles will be published (Hopper 1990a). These 
works provide additional figures and computational details, which are quite simple. 
Sills (1986) found that the predicted shapes for equal cylinders match experiment 
extremely well until about the point where the neck between the cylinders 
disappears. As his cylinders were free to shorten, it is plausible to attribute the 
subsequent failure to the plane-flow approximation becoming poor (cf. $5 and 
Hopper 1984). Sills did not accurately determine the time dependence. 

Those who hold that Nature is benign will calmly accept all this; cynics will insist 
on the promised justification of the parameterization, equation (56). This is easily 
done. Using Lagrange’s formula for the partial-fraction expansion, one finds A,, = 
hB/N. Then (56) leads directly to 

2 

-f Summarized in Hopper (1984). Even after re-writing the analysis in a clean form, it amounted 
to some thirty pages and will not be published. In that article, the parameter used is p = v2 = h4, 
and the elliptic integral K is defined differently. It may be noted that in addition to  the published 
errata, the expression after (7) in that work should read A = ln[l6/(l-m2)] % ln[4d2/(z,JRo)]. 
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Alternatively, (31) [using (56), a, = h(N- l)-l/Ne-ix(zn-l)’N and &,/a, = i / h ] ,  leads 
to the same result. This proves the contention. Direct substitution of (56) into (22)  
is a feasible alternative to using (30) and (31). In fact, the results of this subsection 
were originally obtained in that way. 

4.5. Polygons and a n  oval -functions multivalued on Icl > 1 

Previously we considered the simplest classes of mapping functions, the polynomials 
and rational functions. As demonstrated by the general symmetric cubic, the 
solution of even these can present serious practical difficulties, but it was at  least 
known that the parameterization itself was satisfactory. In this subsection we 
consider mappings whose solutions present more fundamental obstacles. It will be 
seen that the successful parameterization of many interesting and familiar maps 
evidently require more subtle ideas. 

Both from the standpoint of applying the present formalism to practical problems 
and from that of understanding the fundamentals of this type of flow problem, 
functions multivalued on IyI > 1 are of great interest, for they include regions with 
corners. More precisely, if the singular limit of a([, t ) ,  which we may denote Q(c,O), 
is such that z = Q ( a , O )  describes a curve r(0) that has a corner (not a cusp) at the 
z-image of a,; then 52’(5,0) will behave as (c-a,)”, - 1 < a < 1, near a,,. This does 
not mean that Q(5, t ) ,  t 2 0, must possess a singularity of this character anywhere. 
Nevertheless, as the singularities of polynomials and of the rationals considered 
above retain their character while moving in the c-plane, it is natural to attempt a 
parameterization along similar lines. Moreover, a pleasing qualitative appearance 
results. 

An interesting family of maps is generated from 

w’(c)  = (1 - c N p  ( -  1 < a < l),  (67) 

together with the conditions w ( 0 )  = 0, h(0) = 1 and (2). Then z = Q(a, 0) are sort of 
regular curvilinear polygonst. It turns out that only in the case of a = 1 (the 
epicycloids already solved) is this parameterization correct. In all the other cases it 
fails, and for the same mathematical reason. The difficulty is conveniently displayed 
using the case (a = - 1, N = 2). 

Integration of (67) in this case gives 

where the principal branch of the logarithm is chosen, i.e. log 1 = 0. With this choice, 
the description is unambiguous for h(t) < 1. Setting the area a t  n, (24a)  easily gives 

(69) Bfh) = {;In [( 1 + hZ)/(l- P)33-’. 

t They have N-fold rotational symmetry and interior vertex angles (1 +a) rc. If a = - 2/N, the 
Schwarz-Christoffel mapping from the unit circle to the interior of a regular polygon of N verbices 
and sides is obtained. The family (a  = - 1 ,  N = I) ,  0 < A < 1 ,  are ovals having the same shapes as 
the (a = - 1, N = 2) ovals, though at different values of h and displaced to the right. In cases where 
w ( 5 )  cannot be expressed in terms of standard functions it is computationally effective to integrate 
numerically 

4 P o  r )  = 0- U ’ ( P 4  dP (Po 1) I” 
at various values of 9. 
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FIGURE 5. Symmetrical ovals - the N = 2, a = - 1 regular curvilinear polygon (94.5). A = 0.9999, 
0.99, 0.9. (The ovals are more blunt and have flatter sides than ellipses of the same aspect ratio. 
As A -t 1, the aspect ratio increases, the singular limit becoming the Re z-axis.) 

O x  

These equations describe, for A < 1 ,  the family of ovals shown in figure 5.  After 
carrying out the indicated operations, (22) leads almost directly to 

$.(a, A)  = $(A)  log- [ r - A  r+A1 
i 2hB'(A) l + A W  

, P ( r , A ) + r F ( r , A ) - -  - 
A [ B(A) +-I1 l - A W  

x- r:':": 

The log function still refers to the principal branch. The analytic continuation of (70) 
onto 131 < 1 gives $ ( c , A )  as required by the conjectured parameterization. The last 
term leads to simple poles at  c = +A,  which could be avoided by taking i / A  = -F(A, 
A ) .  This is inadequate, however, for the first factor of (70) means that 5 = f A are also 
logarithmic singularities. That these are infinities is a relatively minor point ; the real 
problem is that they are also branch points. As a result, the analytic continuation of 
$(r, A )  as given by (70) is multivalued on 14 < 1. The only way the logarithmic factor 
would not lead to $ ( r , A )  being multivalued would be if the factor in braces were 
identically zero, and it is easily verified that it is not. As noted previously, $(c , t )  
being multivalued on 14 < 1 implies unacceptable discontinuities in the physical 
state of the body. It follows that the conjectured parameterization does not describe 
a shape evolution arising from the type of flow under consideration. 

One may also think of the difficulty as being a discontinuity across a particular 
branch cut, such as (IRe4 < A, Imc  = 0). Then $ ( [ , A )  could be acceptable only if the 
factor in braces were vanish all along the cut. This cannot happen: if the factor in 
braces vanished on the cut, then analytic continuation of that factor off the cut 
would be identically zero, including on the unit circle. 

Exactly analogous things happen with mappings having corners, including regular 
curvilinear polygons with - 1 < a < 1. One might hope that one could obtain a 
cancellation in the case of certain algebraic maps (e.g. a = -a), but this is not the 
case. More generally, if L?(c,t) has branch points on > 1, then the analytic 
continuation of D(r,  t)* onto 151 < 1 leads to corresponding branch points in the latter 
region. And branch points on 14 < 1 lead to intractable incompatibilities of the 
shape-evolution criteria. Indeed, referring to (ZZ), it would seem extremely difficult 
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- and perhaps mathematically impossible - to construct d(<, t )  such that $(5, A )  
meets the requirement of being single-valued. 

Though the foregoing is by no means a proof, it appears that the shapes for t > 
0 are such that Q(<, t )  can have no branch points on If1 > 1. This means that the 
mapping function Q(<, t )  describing the shape a t  any observable time (that is, after 
any finite amount of flow) must be single-valued everywhere in the 5-plane. This 
conclusion is of fundamental interest and serves also as a useful guide in guessing 
maps. The reader will rightly treat this conjecture with caution, but the argument 
is compelling. 

4.6. Entire and meromorphic mpp ing  functions 
Unlike the multi-valued functions, there is little practical incentive for studying 
these, but they are of theoretical interest. By definition, an entire (or ‘integral’) 
function is one that is analytic in the entire complex plane (except for the point a t  
infinity), and a meromorphic function is one whose only singularities in the entire 
complex plane (except for the point at infinity) are poles. (See e.g. Titchmarsh 1939, 
chapter 8.) Thus, the simplest entire functions are the polynomials, and the simplest 
meromorphic ones are the rational functions. Since polynomial and rational maps 
evolve with the form unchanged, in the sense of $3, one might hope for something 
similar. This does not appear to be the case, as illustrated by the two elementary 
examples below. The problems, as might be expected, are associated with the facts 
that a non-polynomial entire function has an essential singularity at infinity, while 
a non-rational meromorphic function has a limit of poles there. 

The function sinhc is entire (and of order l),  and the mapping z = B(h) sin ha, 
which resembles the nephroid, is simple for h <in. However, the analytic 
continuation of Q(a, A)* = B(h) sin (h/cr) has an essential singularity a t  y = 0. Similar 
problems arise from the other conjugate quantities appearing in (22). An elementary 
meromorphic function is tan@, which has simple poles a t  z = (2n-t 1) n/2h. The 
mapping z = B(h) t a n k  is simple for h < in. I n  this case, the analytic continuation 
of Q(a, A)* leads to an (enumerable) infinity of poles on 151 < 1 (on the Re-c axis, and 
accumulating a t  the origin). I n  both cases, the resulting singularities cannot be 
removed under this rather naive parameterization. Moreover, the generality of the 
difficulty (the essential singularity of a non-polynomial entire function at infinity, 
and the limit of poles of a non-rational meromorphic function there) raises the 
question of whether a suitable parameterization of any non-polynomial entire 
function or of any non-rational meromorphic function is possible. 

5. Discussion 
When successful, the methods presented here give exact solutions to the 

mathematical problem stated at ( 5 ) ,  but this problem involves a number of physical 
approximations worth noting. First, the condition that Q(0, t )  = 0, introduced for 
convenience, in some cases leads to rigid-body accelerations. This is an artifact : it has 
no effect on the shape evolution and can always be removed ad hoc at the end of an 
analysis. Secondly, the Suratman number can often be made small independent of 
size R, by raising the viscosity 7 (for example, by a temperature change) ; a small 
Bond number can only be achieved with small size or a microgravity environment. 
One ought to verify that the inertial and gravitational terms of (4) remain small for 
a calculated flow. Thirdly, the surface tension of a real liquid depends significantly 
on the local curvature if it is large enough. Also, two surfaces of a real liquid in close 
proximity exert a force on each other ; that  is, their free energy per unit area depends 
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on the separation of the surfaces, and so, therefore, does the surface tension. These 
phenomena arise from London-van der Waals’ forces, surface dipole layers, adsorbed 
molecules, etc. and more generally from the fact that the environment of a material 
volume element a t  a surface is different when the surface is flat and isolated from 
when i t  is not. Unfortunately, it is the regime of small sizes, where inertial and 
gravitational effects become negligible, that the constancy of the surface tension is 
most likely to come into question. Fourthly, the liquid must be Newtonian and 
incompressible over the regime of stresses encountered. Typically, stresses high 
enough to be a concern would be generated only by curvatures so large that the 
surface tension would not be constant. Finally, there is the assumption of plane flow. 
The plane-flow approximation is usually invoked for long cylinders constrained 
against flowing in the axial direction - by inertia in the case of ‘infinitely’ long 
cylinders. If the ends of the cylinder are free, then capillarity induces, in addition to 
incidental flows near the ends, a general axial flow shortening the body and 
increasing its cross-sectional area. In  assessing the applicability of the plane-flow 
approximation, one should estimate this axial flow and compare its velocities to the 
in-plane velocities of the theory. 

In  the coalescence of cylinders, for example, one might expect the following : (i) the 
in-plane flows due to the axial flow would be negligible compared with those 
calculated in the plane-flow approximation a t  small times, but that the opposite 
would be true when the shape was nearly circular ( t +  a); (ii) the range of the 
parameter v over which the constancy of surface tension is a good approximation will 
depend on the size R, in ways that depend on the liquid itself; and (iii) if the cylinders 
are small enough for gravitation effects to be small, then inertial and non-Newtonian 
effects will be negligible. 

The class of problem analysed is rather restricted : the dynamics (plane creeping 
flow driven by surface tension alone) is relatively simple; and the regions are the 
simplest. However, the class is also very intriguing for its self-contained nature - 
that the tractions arise from the geometry. One cannot reasonably expect to extend 
the methods of the present work to other dynamics, but it would be very desirable 
to extend the results in other ways, Extension to infinite domains is straightforward 
(Hopper 1990 a ) .  General three-dimensional flows would require a generalization of 
the concepts of conformal mapping and analyticity to higher spatial dimensions. 
This topic has not escaped the attention of mathematicians, but it is not clear that 
any of the available generalizations would lead to simple solutions of the creeping 
capillary flow problem. Axisymmetrical flows, involving onlykwo spatial coordinates, 
can be described in terms of ordinary conformal maps, and the use of Stokes’ stream 
function (Lamb 1932 $94; Garabedian 1966 p. 426) seems natural. Extensional flows 
are another possibility, a special case of which is when the general cylinder is allowed 
to shorten under the influence of surface tension at its ends. Extension of the present 
formalism to plane flow in doubly-connected regions is straightforward, for there is 
always a mapping from an annulus. The author has not examined any of these ideas 
in detail. Reflecting on the intrinsic connection between the geometry and dynamics 
of this class of problems, it seems important to determine more precisely the 
constraints on Q(5, t ) .  To speculate, it may turn out that Q(5, t )  must be a rational 
function with no repeated factors in either the numerator or denominator. While it 
has seemed to the author natural to focus on the trajectories of critical points, this 
has so far been unenlightening. The trajectories of critical points in a certain 
mapping from lm 6 2 0 are described in Hopper 1990~ .  

A different approach involves the idea of finding variational principles. Intuitively, 
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one feels there must be something special here. After all, it is reasonable to expect a 
region flowing under the influence of surface tension to reduce its total surface energy 
as steeply (in some sense, perhaps that of time) as possible; while by Helmholtz's 
principle, the flow must be such as to dissipate this energy (as heat) as slowly as 
possible.? It is intriguing that our plane flows naturally become circular, while the 
inverse mapping 5 = Sz-l(z) is governed by either of two variational principles 
involving the circle (Carrier el al. 1966 $84-8). These involve extremizing integrals of 
IdB-'(z)/dzl around the contour r or of (dS1-'(z)/dz12 over the region D.  Does the 
function F ,  involving IQ'(~)l- ' ,  have some interesting interpretation ? Recall also the 
easily proved facts that, if the (dimensionless) perimeter of the regionD is L ,  then the 
(dimensionless) pressure averaged over the perimeter is L/27c, while that averaged 
over the area is 27t/L. These are equal only in the static circular case, when L = 27t. 
It might also be interesting to consider variational principles applied to the three- 
dimensional tube [X( t ) ,  Y ( t ) , t ] ,  0 < t < 00. Is it, perhaps, some sort of constrained 
minimum ? 

The theory and methods presented in this article are intended to provide exact 
solutions of this class of fluid dynamical problem. Two types of approximations can 
be introduced. The first is exemplified by the symmetrical general cubic : one has in 
principle simple equations describing the flow exactly, but it is found necessary to 
solve them numerically. This is a problem in ordinary numerical analysis. The second 
type of approximation occurs when, as in the $4.5, there is no obvious parameterized 
map for the given initial shape. One then seeks a mapping function giving an 
acceptable approximation to the shape of interest, and then determines the evolution 
of that mapping using exact formulae (possibly solved with a numerical analysis of 
the first type approximation). This is a problem in the general field of approximate 
conformal maps, any detailed consideration of which would take us far afield from 
our subject matter (cf. Trefethen 1986). A few comments are, however, appropriate. 
One expects the flows from different maps approximating the same starting shape to 
converge with time. That is, suppose we have two maps 52,([, t )  and Sz,(& t ) ,  both of 
which approach (in some sense) the same (possibly singular) shape as t -+ ti. Then one 
expects that Q,([, t )  --f Q,([, t )  (again, in some appropriate sense) as t +  co. 
Approximations giving 6 in terms of a polynomial in z seem unnatural in the present 
context, for then the mapping function giving z in terms of 5 will be multi-valued. 
Truncated Taylor series in 5 are the simplest approach, but many terms are needed 
to approximate closely singular shapes of interest. It is also natural to consider 
approximating maps with rational functions (Rudin 1966), because the latter were 
shown to evolve in a simple manner, but Pad; approximants, at least, seem not much 
better than truncated Taylor series. In any case the practical difficulties in obtaining 
detailed time dependence remains. Whether combinations of the present concepts 
with modern map approximation methods will prove fruitful remains to be seen. 

An interesting point, with implications to the theory of glass strength, is whether 
anything can be said about a simply-connected region remaining so. A hole cannot 
generate continuously, for it is not possible to map between domains of different 
connectivities. Also, on the basis of the model physics incorporated into the evolution 
equation, it cannot be possible for a cusp to form continuously from a simple curve 
in the forward time direction : tractions and stresses at the surface would blow up. 

t Helmholtz's principle is, in the present context, equivalent to the thermodynamic principle of 
minimum entropy production and to the elasticity principles of minimum strain energy, minimum 
potential energy, and minimum complementary energy (see Lamb 1932, $344 ; Sokolnikov 1956 
chap. 7). 
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FIGURE 6. Example of a possible transition from a simple to a non-simple shape ($5) : Does the 
globe extract itself from the mouth without hitting the walls? 

Tangential contact, however, is another matter. Here the idea is that distinct 
portions of the curves could contact, forming a pair of cusps discontinuously, at 
which point the mathematical theory would become inapplicable to the model 
physics. In an admittedly crude experimental analogue, I have failed to observe such 
an occurrence in the (slow !) flow of oil floating on water. A worrisome configuration 
is depicted in figure 6. Mathematically, this may be a deep and difficult question. 
Global and not merely local properties of the maps are involved. There are quite a 
few famous theorems giving interesting properties of univalent functions, but the 
converse is not true : There are very few theorems whose hypotheses imply a simple 
mapping (cf. Henrici 1986, chapter 19). Having made no significant progress with 
this problem, I merely offer the following conjecture on simplicity : By hypothesis, 
the initial map z = Q(a, ti) is simple; then the shape-evolution condition (equations 
(21) or (22)) implies that the map z = sZ(cr, t ) ,  t > ti, is also simple. A weaker conjecture 
would require that z = Q(a, t i )  be a star domain, in which case the intuitive appeal 
is stronger. 

6. Summary 
The creeping viscous incompressible plane flow in a finite region, bounded initially 

by a simple smooth closed curve and driven solely by surface tension was analysed. 
The shape evolution of the boundary is described by a time-dependent conformal 
mapping z = a(& t ) .  An equation (equivalently equations (21) or (22)) determining 
the time evolution of Q(g, t )  was derived. It was argued that (i)  a shape given initially 
by an Nth-order polynomial map will be described by an Nth-order polynomial map 
at all subsequent times; (ii) a shape given initially by an N-term partial-fraction 
expansion will remain such a t  all subsequent times; (iii) a shape given initially by a 
mapping that is the ratio of an Mth- to an Nth-order polynomial, with M < N and 
having no common or repeated factors, will be described by this same form a t  all 
subsequent times; and (iv) the map Q ( { , t )  describing the shape at any observable 
time must be single-valued everywhere. Indeed, it seems likely that the map must be 
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a rational function. Solved examples were given, including the coalescence of equal 
cylinders. It is conjectured that a region simply-connected initially must remain so. 

The author thanks Professor S. Richardson (University of Edinburgh) and an 
anonymous reviewer for helpful comments on an earlier manuscript. Work performed 
under the auspices of the US Department of Energy by the Lawrence Livermore 
National Laboratory under contract W-7405-ENG-48. 
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